Whole Exome Sequencing Identifies TSC1/TSC2 Biallelic Loss as the Primary and Sufficient Driver Event for Renal Angiomyolipoma Development
نویسندگان
چکیده
Renal angiomyolipoma is a kidney tumor in the perivascular epithelioid (PEComa) family that is common in patients with Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM) but occurs rarely sporadically. Though histologically benign, renal angiomyolipoma can cause life-threatening hemorrhage and kidney failure. Both angiomyolipoma and LAM have mutations in TSC2 or TSC1. However, the frequency and contribution of other somatic events in tumor development is unknown. We performed whole exome sequencing in 32 resected tumor samples (n = 30 angiomyolipoma, n = 2 LAM) from 15 subjects, including three with TSC. Two germline and 22 somatic inactivating mutations in TSC2 were identified, and one germline TSC1 mutation. Twenty of 32 (62%) samples showed copy neutral LOH (CN-LOH) in TSC2 or TSC1 with at least 8 different LOH regions, and 30 of 32 (94%) had biallelic loss of either TSC2 or TSC1. Whole exome sequencing identified a median of 4 somatic non-synonymous coding region mutations (other than in TSC2/TSC1), a mutation rate lower than nearly all other cancer types. Three genes with mutations were known cancer associated genes (BAP1, ARHGAP35 and SPEN), but they were mutated in a single sample each, and were missense variants with uncertain functional effects. Analysis of sixteen angiomyolipomas from a TSC subject showed both second hit point mutations and CN-LOH in TSC2, many of which were distinct, indicating that they were of independent clonal origin. However, three tumors had two shared mutations in addition to private somatic mutations, suggesting a branching evolutionary pattern of tumor development following initiating loss of TSC2. Our results indicate that TSC2 and less commonly TSC1 alterations are the primary essential driver event in angiomyolipoma/LAM, whereas other somatic mutations are rare and likely do not contribute to tumor development.
منابع مشابه
Angiomyolipoma Have Common Mutations in TSC2 but No Other Common Genetic Events
Renal angiomyolipoma are part of the PEComa family of neoplasms, and occur both in association with Tuberous Sclerosis Complex (TSC) and independent of that disorder. Previous studies on the molecular genetic alterations that occur in angiomyolipoma are very limited. We evaluated 9 angiomyolipoma for which frozen tissue was available from a consecutive surgical series. Seven of 8 samples subjec...
متن کاملMonoallelic Germline TSC1 Mutations Are Permissive for T Lymphocyte Development and Homeostasis in Tuberous Sclerosis Complex Individuals
Germline and somatic biallelic mutations of the Tuberous sclerosis complex (TSC) 1 and TSC2 gene products cause TSC, an autosomal dominant multifocal hamartomatosis with variable neurological manifestations. The consequences of TSC1 or TSC2 loss in cells of hematopoietic origin have recently started to be unveiled in mice and showed to hinder the development of proper T cell immunity. To date, ...
متن کاملEstrogen enhances whereas tamoxifen retards development of Tsc mouse liver hemangioma: a tumor related to renal angiomyolipoma and pulmonary lymphangioleiomyomatosis.
Pulmonary lymphangioleiomyomatosis and abdominal angiomyolipoma are related lesions for which there is no authentic animal model. Both of these proliferative lesions occur in sporadic patients, and at much higher frequency in patients with tuberous sclerosis, which is due to mutations in the TSC1 and TSC2 genes. Tsc1+/- and Tsc2+/- mice frequently develop liver hemangioma. We found that the Tsc...
متن کاملInsulin Stimulates Adipogenesis through the Akt-TSC2-mTORC1 Pathway
BACKGROUND The signaling pathways imposing hormonal control over adipocyte differentiation are poorly understood. While insulin and Akt signaling have been found previously to be essential for adipogenesis, the relative importance of their many downstream branches have not been defined. One direct substrate that is inhibited by Akt-mediated phosphorylation is the tuberous sclerosis complex 2 (T...
متن کاملSubependymal giant cell astrocytomas in Tuberous Sclerosis Complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations
Subependymal giant cell astrocytomas (SEGAs) are rare, low-grade glioneuronal brain tumors that occur almost exclusively in patients with tuberous sclerosis complex (TSC). Though histologically benign, SEGAs can lead to serious neurological complications, including hydrocephalus, intractable seizures and death. Previous studies in a limited number of SEGAs have provided evidence for a biallelic...
متن کامل